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The Lattice Structure of Multiplicative Congruential 
Pseudo-Random Vectors* 

By W. A. Beyer, R. B. Roof and Dorothy Williamson 

Abstract. The lattice structure of points in an n-dimensional space produced by an ap- 
propriate grouping of pseudo-random numbers obtained from multiplicative congruential 
generators is discussed. Examples are given for 2 < n < 6. The work is based on the theory 
of the reduction of positive quadratic forms in n variables. 

1. Introduction. There have recently appeared several articles [3], ?8], [13] 
discussing the distribution of points in an n-dimensional Euclidean space E" obtained 
from multiplicative congruential pseudo-random generators. For example, if x0, X, , 
/L, and n are given positive integers and if 

(1) xi- xix, (mod 20) (i = 1, 2, **) 

or 

(2) X xi 5Xx;, + ,U (mod 2X) ( = 1, 2, ** ), 

Marsaglia [8] has shown that the points 

(3) (x0, xl,~ .. * *,Xn_l, (Xn, .. * *, X2n_09 . 

may lie on relatively few hyperplanes in En. This idea goes back at least to Franklin 
[4], [5]. Wood [14] describes a method he used to show that the points actually form a 
simple lattice in the case n = 2. Because his methods and results may be of some 
interest, it was thought that a report giving further details would be appropriate. 
In addition, a procedure for an extension to 3 < n ? 6 is given. Examples are presented 
for 2 < n ? 6. A more complete discussion of the general theory is given. 

The interest in the present work arises from the need to know whether the generator 
produces points (3) which lie on few hyperplanes or lie on many. In the first instance, 
the pseudo-random points will not be uniformly distributed through the hypercube 
and hence the generator is probably not "good." 

While this discussion bears some similarity to that of Coveyou and MacPherson [3], 
it has some advantages. First, it exhibits precisely the structure of the sets defined 
by (3). Secondly, it avoids a discussion of the Fourier analysis of lattice structure in 
which Coveyou and MacPherson couch their work. On the other hand, the present 
analysis has not been extended beyond n = 6 (but it is possible to extend the analysis), 
while Coveyou and MacPherson discuss 2 ? n ? 10. 
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In Section 8 the relation between the discrepancy theory of Zaremba (and others) 
and the present theory is discussed. 

Applications of pseudo-random numbers in Monte Carlo calculations are well 
known. Applications in digital communications, especially in space communications, 
may not be so well known. See [6]. 

The computations were done on the Maniac II computer of the Los Alamos 
Scientific Laboratory. The Madcap language was used for the coding. This language 
can readily process arbitrarily large integers which is a requirement of our computa- 
tions. 

2. A Lattice in E'. A lattice Gn in En consists of all vectors of the form y = 

eo + D l eiyi where the ei (1 < i < n) are n fixed linearly independent vectors, 
the y, are integers, positive, negative, or zero, and eo is a fixed vector. (This definition 
is not standard in that the origin is not required to be in the lattice.) The { ei } are 
said to form a basis of Gn. Put in other terms, a lattice Gn is a coset of a discrete 
subgroup H of the additive group of vectors in En where H has n linearly independent 
vectors. H is discrete if every x E H has a neighborhood free of points of H other 
than x. The basis vectors of Gn are then called generators of H. 

Following van der Waerden [12, p. 276] one says the basis {e, } is reduced (in the 
sense of Minkowski) if: 

(1) e, is the shortest (in the Euclidean norm) of all vectors E,_, eiy, with the 
greatest common divisor of y,, y,, yn: (Y, y, * Y), equal to 1, 

(2) ek is the shortest of all vectors E"= eiyi with .k, y* ) * 1, for k= 2, 3, *., n. 
Let N1 be the length of the shortest nonzero vector S1 = eiyi. Let N2 be the 

length of the shortest vector S2 = E =, eiyi which is linearly independent of S1. And 
so on, one defines the successive minima N1, N2, * . . Then if the { ei } are reduced, 
it was shown by Mahler and Weyl [12] that 

leil :!! SiNi, i-= 1, 2, *,n, 

where 1 =1, a- = max(I 14,1 
? {a2 + * ** + 

5,-1 
+ )fork = 2, , n and that 

Ieil Ni, i= 1,2,3,4, 

where lel denotes tiie Euclidean norm. It is this result which connects the reduced 
bases with the more intuitive idea of the "size" of the fundamental "cell" in the 
lattice and makes our theory a tool to study the distribution of pseudo-random points 
in the n-cube. 

Minkowski [9] has stated the following for n 5 6. (ej),sj,?, is reduced if for every 
subset of (ej),1i?sn, say (ei,)1?,9j:,k, one has 

le.j < Z(&L)C1ej1, j = 1, 2,* k, 

for all combinations of i signs and (C1)1?,9,9k ranging over the following values. 
If k = 2, 3, and 4, Cl = 1. For k = 5, one of the Cl takes the values 1 and 2 and the 
remainder take the value 1. For k = 6, one of the Cl takes the values 1, 2, 3, another 
Cl takes the values 1 and 2, and the remainder take the value 1. (The cases k = 5, 
6 are stated [9] without proof.) 
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The analysis given in van der Waerden [12] can be used to obtain algorithms 
for n > 6, but would not be optimal algorithms as is so for 2 ? n ? 6. 

For a set of vectors in En: (aj)g1j,g,, define det (ai) to be the n X n determinant 
whose ith row consists of the components of the vector ai. It is easy to show (see 
Cassels [2, p. 11, lines 7 to 13]) that for a given lattice G,, a set (aj)o0?g;7 in G., defines a 
basis (ai - a0)1;i,.. of G. if and only if 0 < Idet (ai -a)l < Idet (a' - al)l for any 
any other set (aO)0,S 5. in G,, such that det (a - a) # 0. Further (see Cassels [2, 
pp. 9 and 10]), two sets (a,)0 j, and (a')o?6 j,, in G., both define a basis of G,, if and 
only if there exists an n X n matrix T with integer entries and with det T = i 1 
(unimodular matrix) so that [at - aj] = T[a - aj], where [ai - ao] is the n X n 
matrix whose ith row is the vector ai - ao. 

A reduction algorithm is a procedure for obtaining from a basis of a lattice a 
reduced basis. Reduction algorithms are described and applied for 2 < n < 6. 

3. The Lattice Structure of Multiplicative Congruential Pseudo-Random 
Vectors. In this section n is an arbitrary positive integer. The following Lemmas 1 
and 2 will be needed. They are taken from the book of Jansson [7, p. 68]. 

LEMMA 1. (1) When X _ 3 (mod 8) and x0 1 or 3 (mod 8), each sequence 
produced by (1) is some permutation of all the numbers 8v + 1 and 8v + 3 (v = 0, 

* 2A- 1). 

(2) When X 3 (mod 8) and xo 5 or 7 (mod 8), each sequence produced by (1) is 
some permutation of all the numbers 8v + 5 and 8v + 7 (v = 0, 1, * *, - 1). 

(3) When X 5 (mod 8) and x0- 1 (mod 4), each sequence produced by (1) is 
some permutation of all the numbers 4v + 1 (v = 0, 1, * , 2p-21). 

(4) When X 5 (mod 8) and x0 3 (mod 4), each sequence produced by (1) is 
some permutation of all the numbers 4v + 3 (v = 0, 1, 2, ... , 2p- _1) 

Remark. A method of determining exactly what permutation occurs is illustrated 
by the following discussion. 

Consider the case X 5 (mod 8) and x0 = 1. Denote the sequence generated 
by X = 5 by 

(4) So {x?;i = 0, 1, 2, . 2a-2- 1} 

with x'? 5' (mod 20). So every multiplier X 5 (mod 8) with 0 < X < 20 occurs 
among the odd members of S0. Every X 5 (mod 8), 0 < X < 2p, multiplier has a 
representation of the form X = x' 1 52n+ (mod 20). Let S,, be the sequence 
generated with X = x? 1: Sn 

= 
{x(n); i 0 1, . . . , 2 1 }. One has 

x(n) _[x(?) J]' (mod 2#) [52n+1]i _ (mod 2#) 

5(2n+1)i (mod 2a) = x 2) i 

i.e. when the multiplier X =- x(n) 1 is used, the sequence obtained from xi+, 
Xxi (mod 20), x0 = 1, consists of selecting every (2n + l)th number from (4), beginning 
with the first. 

LEMMA 2. If, in (2), X 1 (mod 4) and 1 (mod 2), then (2) produces a permu- 
tation of the numbers 0, 1, 2, ... , 2' - 1. 

The following lemma is needed in the subsequent development. 
LEMMA 3. Let A C E' be a point set such that every point in A has integer co- 
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ordinates and there are n + 1 vectors in A, say ei, 0 < i < n, so that e, - eo, 1 < i < n, 
are linearly independent. Suppose for any a, E A, O < i < n, and any set of integers ki, 
1 ? i : n, it is so that aO + E_, ki(a,- ao) E A. Then A is a lattice. 

Proof. Choose ej, 0 < j 9 n, in A so that Idet (ei - eO)J D has the least positive 
value where 1 < i < n. By the hypothesis, every eo + El- k,(ei - eo) E A where the 
ki are arbitrary integers. Let a be an arbitrary vector in A. Since {e - e0; i = 1, 2,... n) 
is a linearly independent set, there exist real 'yi such that a - =c, E yl(e, - eo). 
Suppose y, is not an integer for some j, 1 _ j < n. Form 

el-eo el-eo 

a -a [,](ei- eo) e o L ('Yi - 5ji,(iy)(e- eo) 

ej+l eo ei+l eo 

e-eO e, -eO 

el- eo 

= - 
- ['yi))(ei - eo) | = K yJ]J D 

en-eO 

where [,y] denotes largest integer in y;. Since 0 < Jj'y - ['yJ D < D, it is false that D 
is the minimum positive value of Idet (ei - e) where e, E A. Thus the y' are integers 
and therefore every a E A has a representation a = eo + E" -y lei ( eo) where 
the yi are integers. This completes the proof of the lemma. For a more general lemma, 
see Cassels [2, p. 78]. 

In Lemmas 4 to 8 the points defined by (1) or (2) and (3) or (1) or (2) and 

(5) (XO, X1, , I Xn_1), (X1, , * XJ), (X2, * * * , Xn + 1), 

are discussed. We make the following convention: The point sets (3) and (5) are to be 
regarded as point sets Gn in En which are continued by periodicity throughout E; i.e., 
if (t1, t2, ... * tn) E Gn, then (t, + h121, t2 + h22, . * * , tn + h.20) E Gn for all positive, 
zero, and negative integers hi. 

Remark. It might be objected that points generated by (1) and (5) or (2) and (5) 
would make a poor random-point generator, since such points would be highly 
correlated over a short run. However, the points defined by (1) and (3) or (2) and (3) 
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are a reasonably sized subset for small n of those mentioned before and a discussion 
of the lattice structure of (5) gives information about the lattice structure of (3). 

LEMMA 4. If in (1) X 5 (mod 8) and x0 1 (mod 4), then the point set Gn given 
by (5) forms a lattice in E'. 

Proof. If ui, 1 < i < n, are the unit coordinate vectors inl En and x E Gn, the 
vectors x, x + 2oui are n + 1 vectors in Gn for which (x + 2oui) - x are linearly 
independent. Let xi , 0 < i < n, be n + 1 points of Gn, not necessarily distinct. Let ki, 
1 ? i < n, be arbitrary integers. Recall that xi i = (Xi ; Xi j * *... * xi i+n) = (Xi p Xxi i + 
h120, X2xii + h229, * * , Xn- 'Xi + hn.120) for some integers hi where xii is the i3th 
number generated by (1). Form 

n 
x = Xi. + jk3(xi - Xi.) 

- {i. + ki(xi, - xo) X Xi,) + E ki(xi - xi.) + h,2,5 

X + E ki(xij - xio)] + h,-12 } 

where h, are again integers and the k; are arbitrary integers. Since every x in the 
sequence generated by (1) under the hypothesis on X and x0 has the form 4v + 1, 

0, 1, ..., 2p-2 1 (Lemma 1, Part 3), xi0 + 1 ki(xi x-ix0) has the form 
4v + 1 for some integer v. But every number of this form can be expressed as 4v + 1- 
4v, + 1 + h2' with O? v < 2 2 _ - and h, v, as integers. Thus x E Gn. Lemma 3 
can now be applied to give the conclusion of the theorem. 

In a similar way, Lemmas 5 to 8 can be proved, using Lemmas 1, 2, and 3. 
LEMMA 5. If, in (1), X -5 (mod 8) and x0 3 (mod 4), then the point set G. 

given by (5) forms a lattice in EF. 

LEMMA 6. In (1), let AX 3 (mod 8) or X 5 (mod 8) and let x0 be odd. Then 
the set (X2w, X2n+), n - , 1, 2, ... , is a lattice in E2. 

LEMMA 7. In (1), let X 3 (mod 8). Let Gn be the set of points in (5) determined 
with x0 1, or 3 (mod 8) and G, be the same set, but with xo 5 or 7 (mod 8). Then 
G,, U G' forms a lattice in En. 

LEMMA 8. In (2), let X 1 (mod 4) and , 1 (mod 2). Then the set of points 
in (5) form a lattice in En and the basis vectors of the lattice do not depend on ,u. The 
sequence (X2ng X2n+1) n = 0, 1, 2, ... , forms a lattice in E. 

Remark 1. The points x, (extended by our convention) defined by 

xi _ 3xi-, (mod 23), xo = 1, 

do not form a lattice on the line. 
Remark 2. The structure of sequences generated by other generators, such as 
1. x+,,, Xx, + p (mod po) (p an odd prime), 
2. x,,, 1 Xxn (mod 100), 
3. xn+l aoxn + alxn-l + * * + aixn-1 (modp) (p a prime), 
4. xn+j xn + xn-l (mod 2k), 

is discussed in Jansson [7] and a theory analogous to that discussed here might be 
developable. 
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4. Reduction Algorithm in the Case n = 2. Let G2 be a lattice with a basis 
(el, e2). Then, by the discussion in Section 2, if w is an integer, (el, e2 + weJ) is a 
basis of G2 since 

[e2+ we], w li:e2J 
and the matrix (, 1) is unimodular. w is chosen to minimize (e2 + we,)2. Hence w must 
satisfy (e2 + (w - l)el)2 > (e2 + we1)2 < (e2 + (w + l)e1)2 or 

e1e2 e, *e2 1 (6) 
~~~~~e, 2 el 2 

In order to determine w uniquely, the right-hand inequality in (6) is replaced by < to 
give 

(7) _el'2e2 _ < w < 
el 

le2 2+ 2 ee2 2 (7) ~~~~~~el 2 el 2 

Call the basis (el, e, + we,) thus determined (el, el). Replace the basis (el, el) by a 
new basis (e, + w'el, el) where w' is the unique integer determined by 

(8) er2e2 ! w ' < e2 e+ e~22 e~2 2 
The above procedure is then iterated until two successive minimizing integers of the 
form w and w' are zero. The resulting basis (l,, 62) is reduced since, from (7), W 2g 
2e6, '92 -_2 and, from (8), e2 ! 2e1e2 >-_22 and therefore 2 - 

~ 2 I1 
1 2 2and 2 

which implies that re and eZ are in length less than or equal to the length of the diag- 
onals of the parallelograms which have 6s, e, as adjacent sides. The above algorithm 
must eventually terminate since for each pair of steps of the algorithm for which 
w and w' is not both zero, the vectors (el, e2) with integer coordinates are replaced by 
a pair of vectors (el, el) with integer coordinates such that lell 5 jell and Jell ; lele 
with strict inequality in one of the cases. 

5. Reduction Algorithm in the Case 3 5 n < 6. Assume 3 ? n ? 6. Let E= 
(el, e2, * . , e") be a set of basis vectors of a lattice Gn. Stage 1 of the reduction algor- 
ithm consists in successively replacing each pair of distinct vectors in E by a reduced 
pair, using the reduction algorithm for n = 2. This replacement defines a unimodular 
transformation from E to new set of vectors E' and hence E' is a basis of Gn. This 
operation is repeated until no further reduction by pairs is possible. 

Stage 2 of the algorithm consists in examining for each k-tuple (e,)l ;"' the 
vectors El-l (?)C,e., where the values of Cl are described in Section 2. If it is found 
for some combination of i signs and Cl's and for some ei, that 

k 

feiiI > | E h)Cle|, 

the vector ei is replaced by the vector e'; = Ek_l (f)C1ei, (the transformation 
from E = (e)sisn to E' = (el, e2 * , er,, * , en) is unimodular). Stage 1 of the 
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algorithm is repeated on E'. The algorithm must terminate after a finite number of 
steps, since if a basis is altered by an operation in stages 1 or 2, the alteration consists 
in replacing a vector with integer coordinates with a shorter vector having integer 
coordinates. 

Remark. In the initial consideration of the problem of finding reduced bases 
for n > 2, the search technique suggested by Coveyou and MacPherson [3] was 
considered with some modifications suggested in van der Waerden [12]. Without 
preliminary reduction it was found in a typical example (of the type discussed in this 
paper) about 1019 vectors would have had to be examined to find the shortest nonzero 
vector. Techniques used in crystallography were also considered (see Azaroff and 
Buerger [1] and Roof [10]). Tests showed that these techniques were unsatisfactory 
for our purposes, due to lack of precision and the amount of search required. 

6. Finding Bases for Multiplicative Congruential Pseudo-Random Points. 
To apply the reduction algorithm to the determination of reduced bases for pseudo- 
random points of the form (3) or (5), it is necessary to find a basis of these points. 
The method of finding a basis is illustrated by an example. 

Consider the example of the generator (1) with X 5 (mod 8) and x =1 (mod 4). 
To find a set of basis vectors for Gn defined by (5), choose a set of n + 1 vectors in Gn 
as follows: 

ro = (1, X, X2 . X.). 

ri = (4ai + 1, X(4a. + 1) + h2 ..... Xn'(4ai + 1) + hnl-2'), 

i = 1, 2,. . n. 

where ai, hk, i = 1, 2, * , n, k = 1, 2, ... , n - 1, are arbitraryintegers. Acalculation 
gives 

a1 h ...h 

det (ri - r0) 22 2''" a2 

a0n 
hn hn- 1 

and Idet (ri - r,)j has its minimum nonzero value when a, = h= = h' = 
h 1n- ,1 the other determinant entries being zero. Thus a set of basis vectors of Gn is 
given by (with these choices for ai and hl) 

r, - ro = 4(1, X, X2 * n1. , ) 

ri -ro = (0, 0 ,o, 2, 0 * , ,0), i = 2, 3, * , n, 

where 2p appears in the ith place. 

7. Examples. Tables 1 to 5 present a few examples. It is hoped that the captions 
are self-explanatory, except for "figure of merit" defined for a reduced basis 
{y; i- 1, 2, * , n} by 

min Vyj I 
figure of merit--5-5" 

max (yl 
15i5n 
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The figure of merit provides some measure (neglecting angle) of the departure of the 
reduced cell from "squareness." x.xx - Oa means x.xx* 10-a. The angles refer to 
angles between the edges. Angles between higher-dimensional fiats have not been 
calculated, but it might be useful to do so. Each row of the tables lists the components 
of a vector. 

It is seen from these tables that multipliers of simple structure, such as 5 or 2'7 + 5 
produce lattices of points which depart greatly from a uniform distribution throughout 
the cube. Multipliers of more complex structure, such as 515 or the "randomly" 
selected multiplier 273673163157 produce better lattices. A typical time for the 
computation of- a table on Maniac II was 20 minutes. The CDC 6600 is perhaps 
8 times faster than Maniac II. 

It is hoped that more examples with a more complete discussion can be presented 
in the future. 

8. Connection Between Lattices of Pseudo-Random Points and the Theory 
of Discrepancy. Zaremba [15], Schmidt [11], and others (see references in [11] 
and [15]) have discussed the notion of the discrepancy D(S) of a finite number of 
points S in the unit cube In C En. The quantity D(S) can be used to estimate the error 
in the evaluation of a multidimensional integral. As an example, iff(x, y) is of bounded 
variation in the sense of Hardy and Krause over 12 and S = (x0, x , ) is an 
arbitrary sequence of points in I2, then 

N-1 

1 (x) dx - N"' , f(xk,) ! V2(f)D(S) + V(f(x, 1))D(X) + V(f(l, y))D(Y), 

where V and V2 denote one- and two-dimensional variation and X and Y are projec- 
tions of S on the x and y axis respectively. Roth (see [15]) has proved that, for E', 

D(S) Cn,N-'(log N)('-' V2 

for some constant C, 
It seems to be a reasonable conjecture that if the figure of merit (see Section 7) 

of a lattice Gn is very small, then D(Gn n In) is large. Conversely, if the figure of merit 
is near 1, D(G, n In) is small. 

It should be remarked that the application of this lattice theory to much shorter 
segments of the full period of the generator sequence depends on the extent to which 
the lattice properties are reflected in the segments. 

Acknowledgment. The authors thank Dr. W. W. Wood of this laboratory for 
valuable help and suggestions in the preparation of this paper. 

Postscript. After completion of the above paper, the following important paper 
came to the authors' attention: 

R. R. Coveyou, "Random number generation is too important to be left to chance," 
Studies in Appl. Math., v. 3, 1970, pp. 70-11. 

That paper has things in common with our paper. However, our paper was written 
independently and differs from the former in important details. It was thought best 
to not revise the present paper. 
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