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The Lattice Structure of Multiplicative Congruential
Pseudo-Random Vectors*

By W. A. Beyer, R. B. Roof and Dorothy Williamson

Abstract. The lattice structure of points in an n-dimensional space produced by an ap-
propriate grouping of pseudo-random numbers obtained from multiplicative congruential
generators is discussed. Examples are given for 2 < n < 6. The work is based on the theory
of the reduction of positive quadratic forms in » variables.

1. Introduction. There have recently appeared several articles [3], 48], [13]
discussing the distribution of points in an n-dimensional Euclidean space E" obtained
from multiplicative congruential pseudo-random generators. For example, if xo, A, 8,
u, and n are given positive integers and if

¢)) X =AMy, (mod 2% (=12, -+")
or
2 X; = \x;_; + p (mod 2%) Gi=1,2,--),

Marsaglia [8] has shown that the points

(3) (x0! X1y *t 0 xn—l)’ (xn’ Y xZn—l)a te

may lie on relatively few hyperplanes in E". This idea goes back at least to Franklin
[4], [51. Wood [14] describes a method he used to show that the points actually form a
simple lattice in the case n = 2, Because his methods and results may be of some
interest, it was thought that a report giving further details would be appropriate.
In addition, a procedure for an extension to 3 < n < 6 is given. Examples are presented
for 2 £ n £ 6. A more complete discussion of the general theory is given.

The interest in the present work arises from the need to know whether the generator
produces points (3) which lie on few hyperplanes or lie on many. In the first instance,
the pseudo-random points will not be uniformly distributed through the hypercube
and hence the generator is probably not “good.”

While this discussion bears some similarity to that of Coveyou and MacPherson [3],
it has some advantages. First, it exhibits precisely the structure of the sets defined
by (3). Secondly, it avoids a discussion of the Fourier analysis of lattice structure in
which Coveyou and MacPherson couch their work. On the other hand, the present
analysis has not been extended beyond n = 6 (but it is possible to extend the analysis),
while Coveyou and MacPherson discuss 2 = n = 10.
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In Section 8 the relation between the discrepancy theory of Zaremba (and others)
and the present theory is discussed.

Applications of pseudo-random numbers in Monte Carlo calculations are well
known. Applications in digital communications, especially in space communications,
may not be so well known. See [6].

The computations were done on the Maniac II computer of the Los Alamos
Scientific Laboratory. The Madcap language was used for the coding. This language
can readily process arbitrarily large integers which is a requirement of our computa-
tions.

2. A Lattice in E". A lattice G, in E" consists of all vectors of the form y =
€ + > ., ey; where the e; (1 < i < n) are n fixed linearly independent vectors,
the y; are integers, positive, negative, or zero, and €, is a fixed vector. (This definition
is not standard in that the origin is not required to be in the lattice.) The {e;} are
said to form a basis of G,. Put in other terms, a lattice G, is a coset of a discrete
subgroup H of the additive group of vectors in E” where H has # linearly independent
vectors. H is discrete if every x & H has a neighborhood free of points of H other
than x. The basis vectors of G, are then called generators of H.

Following van der Waerden [12, p. 276] one says the basis {e;} is reduced (in the
sense of Minkowski) if?

(1) e, is the shortest (in the Euclidean norm) of all vectors Y »., e;»; with the
greatest common divisor of yy, Vs, <+ , Yur (015 ***5 V), equal to 1,

(2) e is the shortest of all vectors Y _"_, e,y; With (i,* -, y,) =1, for k=2,3,-- -, n.

Let N, be the length of the shortest nonzero vector S; = »_"_, e;3:. Let N, be the
length of the shortest vector S, = »_7_, €;); which is linearly independent of S,. And
so on, one defines the successive minima Ny, N,, - -+ . Then if the {e;} are reduced,
it was shown by Mahler and Weyl [12] that

le;] € &N,y  i=1,2,++,m,
where 6, = 1, §, = max (1,16, + 18 + - -+ + 0y + P fork =2, .-+, n and that
le;| = Ni;y  i=1,2,3,4,

where |e| denotes the Euclidean norm. It is this result which connects the reduced
bases with the more intuitive idea of the “size” of the fundamental “cell” in the
lattice and makes our theory a tool to study the distribution of pseudo-random points
in the n-cube.

Minkowski [9] has stated the following for n < 6. (e;);:s. is reduced if for every
subset Of (€:)1gigns SaY (€4,)15555> ONE has

les;| =

s j 1929"',k,

k
IZ (£)Ce;,
=1

for all combinations of = signs and (C)):<:<: ranging over the following values.
Ifk = 2,3,and 4, C, = 1. For k = 5, one of the C, takes the values 1 and 2 and the
remainder take the value 1. For k = 6, one of the C, takes the values 1, 2, 3, another
C, takes the values 1 and 2, and the remainder take the value 1. (The cases k = 5,
6 are stated [9] without proof.)
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The analysis given in van der Waerden [12] can be used to obtain algorithms
for n > 6, but would not be optimal algorithms as is so for 2 < n £ 6.

For a set of vectors in E™ (a;),<:5., define det (2;) to be the n X n determinant
whose ith row consists of the components of the vector a,. It is easy to show (see
Cassels [2, p. 11, lines 7 to 13]) that for a given lattice G,, a set (2:)os:s» in G, defines a
basis (a; — ao)isis Of G, if and only if 0 < |det (a; — a,)| < |det (ai — af)| for any
any other set (al)osisn in G, such that det (a; — aj) % 0. Further (see Cassels [2,
pp. 9 and 10]), two sets (a,)o<:<. and (al)osi<» in G, both define a basis of G, if and
only if there exists an n X n matrix T with integer entries and with det T = =+ 1
(unimodular matrix) so that [a; — aj] = T[a;, — a,], where [a; — ao]isthen X n
matrix whose ith row is the vector a; — a,.

A reduction algorithm is a procedure for obtaining from a basis of a lattice a
reduced basis. Reduction algorithms are described and applied for 2 = n < 6.

3. The Lattice Structure of Multiplicative Congruential Pseudo-Random
Vectors. In this section z is an arbitrary positive integer. The following Lemmas 1
and 2 will be needed. They are taken from the book of Jansson [7, p. 68].

Lemma 1. (1) When N = 3 (mod 8) and x, = 1 or 3 (mod 8), each sequence
produced gyy (1) is some permutation of all the numbers 8v + 1 and 8v» 4 3 (» = 0,
L. ,27% = 1)

(2) When \ = 3 (mod 8) and x, = 5 or 7 (mod 8), each sequence produced by (1) is
some permutation of all the numbers 8v + 5and 8 + 7 ( = 0,1, -+- ,2°7® — 1),

(3) When \ = 5 (mod 8) and x, = 1 (mod 4), each sequence produced by (1) is
some permutation of all the numbers 4v + 1 (v = 0,1, -+ , 2772 — 1),

(4) When N = 5 (mod 8) and x, = 3 (mod 4), each sequence produced by (1) is
some permutation of all the numbers 4v + 3 (» = 0,1,2, --- , 272 — 1),

Remark. A method of determining exactly what permutation occurs is illustrated
by the following discussion.

Consider the case N = 5 (mod 8) and x, = 1. Denote the sequence generated
by A = Sby

4 So = {x;i=0,1,2,---,2° — 1}

with x* = 5° (mod 2°). So every multiplier X = 5 (mod 8) with 0 < A < 2 occurs
among the odd members of S,. Every A = 5 (mod 8), 0 < A < 2, multiplier has a
representation of the form A = x{, = 5°**' (mod 2°). Let S, be the sequence
generated with A = x{,.: S, = {x™;i=0,1,---,2°% — 1}. One has

(n)

™ = [xi,] (mod 2%) [57**']° = (mod 2°)

_ e@a+D)i By — (0 .
= 5" (mod 2°) = X(an+1)s3

i.e. when the multiplier X = x{%,, is used, the sequence obtained from x;,, =
p

Ax; (mod 2%), x, = 1, consists of selecting every (2n + 1)th number from (4), beginning
with the first.

Lemma 2. If, in (2), N = 1 (mod 4) and u = 1 (mod 2), then (2) produces a permu-
tation of the numbers 0, 1,2, -+, 2° — 1,

The following lemma is needed in the subsequent development.

LemMMA 3. Let A C E" be a point set such that every point in A has integer co-
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ordinates and there aren + 1 vectorsin A,saye;,0 < i < n,sothate; — e, 1 =i = n,
are linearly independent. Suppose for any a, € A, 0 = i < n, and any set of integers k;,
1 SiZnitissothata, + Y ., ki@, — a,) € A. Then A is a lattice.

Proof. Choosee;,0 < j < n,in 4 so that |det (e; — €,)| = D has the least positive
value where 1 £ i £ n. By the hypothesis, every e, + Z’,.'_l k.(e; — e;) € A where the
k; are arbitrary integers. Leta be an arbitrary vectorin 4. Since {e; — ;i = 1,2, - ,n}
. % . . .
is_a linearly independent set, there exist real v; such thata — e, = X 1., vi(e; — €).
Suppose v; is not an integer for some j, 1 £ j £ n. Form

€ — € € — €
€j-1 — € €i-1 — €
a — [y;l(e; — e)) — eo‘ = l > s — Silvile: — eo)
fm]
e;y1 — € €j+1 — €
e, — € e, — €
e — €
€j—1 — €
= ||tv; — [yiD(e; — eo)|| = lv; — [v;l| D
;.1 — €
e,. h eo

where [y;] denotes largest integer in v;. Since 0 < |y; — [v;]| D < D, it s false that D
is the minimum positive value of |det (e; — €,)| where e; &€ A. Thus the v, are integers
and therefore every a € A has a representation a = e, + > 1., v:(e; — €,) where
the v, are integers. This completes the proof of the lemma. For a more general lemma,
see Cassels [2, p. 78].

In Lemmas 4 to 8 the points defined by (1) or (2) and (3) or (1) or (2) and

(5) (x0» X1y " xn—l)’ (xlr MY xn)s (x2’ MY xn+l)’ cc

are discussed. We make the following convention: The point sets (3) and (5) are to be
regarded as point sets G, in E” which are continued by periodicity throughout E; i.e.,
if(t, 1y, + , 1) € Gy, then (8, + 2%, 1, + 2%, -+, 1, + h,2°) € G, for all positive,
zero, and negative integers 4.

Remark. It might be objected that points generated by (1) and (5) or (2) and (5)
would make a poor random-point generator, since such points would be highly
correlated over a short run. However, the points defined by (1) and (3) or (2) and (3)
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are a reasonably sized subset for small n of those mentioned before and a discussion
of the lattice structure of (5) gives information about the lattice structure of (3).

LemMmA 4. Ifin(1) X = 5 (mod 8) and x, = 1 (mod 4), then the point set G, given
by (5) forms a lattice in E",

Proof. If u;, 1 £ i £ n, are the unit coordinate vectors in E" and x € G,, the
vectors x, x -+ 2°u; are n + 1 vectors in G, for which (x + 2°u;) — x are linearly
independent. Let x;,,0 = j =< n, be n + 1 points of G,, not necessarily distinct. Let k;,
1 < i < n, bearbitrary integers. Recall that X;; = (Xi;, Xi 41, =+ = » Xijen) = (Xi ;s NXi; +
h2%, \x;, + h28, -, N 'x;, 4+ h,_,2°) for some integers h; where x;, is the i;th
number generated by (1). Form

X =x; + E ki(x;; — %;,)

i=1

= {xio + Z ki(xii - xio)y >\[xio + Z ki(xi; - xio)] + hlzﬁ’ STty
i=1

i=1

)\n—.l l:xio -+ Z ki(xii - xio)] + h —12ﬂ}

i=1
where A; are again integers and the k; are arbitrary integers. Since every x in the
sequence generated by (1) under the hypothesis on A and x, has the form 4» - 1,
y=0,1,---,2°* — 1 (Lemma 1, Part 3), x;, + D ., k;i(x;; — x:,) has the form
4y -+ 1 for some integer ». But every number of this form can be expressed as4v + 1 =
4y, 4+ 1 + h2° with 0 < », < 2°°% — 1 and h, », as integers. Thus x € G,. Lemma 3
can now be applied to give the conclusion of the theorem.

In a similar way, Lemmas 5 to 8 can be proved, using Lemmas 1, 2, and 3.

LemMA 5. If, in (1), N = 5 (mod 8) and x, = 3 (mod 4), then the point set G,
given by (5) forms a lattice in E".

Lemma 6. In (1), let X\ = 3 (mod 8) or N\ = 5 (mod 8) and let x, be odd. Then
the set (Xony Xons1)s B = 0, 1,2, «++ , is a lattice in E°.

Lemma 7. In (1), let X = 3 (mod 8). Let G, be the set of points in (5) determined
with x, = 1, or 3 (mod 8) and G! be the same set, but with x, = 5 or 7 (mod 8). Then
G, \J G! forms a lattice in E",

LeMMA 8. In (2), let X = 1 (mod 4) and u = 1 (mod 2). Then the set of points
in (5) form a lattice in E" and the basis vectors of the lattice do not depend on p. The
sequence (Xany Xans1), B = 0, 1,2, -+, forms a lattice in E°.

Remark 1. The points x; (extended by our convention) defined by

X, = 3.76.'._1 (mod 23), Xo = 1,

do not form a lattice on the line.
Remark 2. The structure of sequences generated by other generators, such as
1. X.s1 = AX, + u (mod p°) (p an odd prime),
2. Xpe1 = X, (mod 10°), }
3. Xp41 = QoX, + a1Xp- + -+ + a;x,.; (mod p) (p a prime),
4, Xp41 = X, + X,-, (mod 2°),
is discussed in Jansson [7] and a theory analogous to that discussed here might be
developable.
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4. Reduction Algorithm in the Case n = 2. Let G, be a lattice with a basis
(e1, €;). Then, by the discussion in Section 2, if w is an integer, (e,, €, + we;) is a

€, + we w 1 e2

and the matrix (}, 7) is unimodular. w is chosen to minimize (e, + we,)’. Hence w must
satisfy (e, 4+ (w — 1)e;)* = (e, + we,)® < (e, + (w + 1e,)® or

&t _l< < &€ .1.
O e 2=W= el + 2

In order to determine w uniquely, the right-hand inequality in (6) is replaced by < to
give

€ e 1 e -e 1
7 _#__S —=1_Z2 =
™ TS W< —TEt

Call the basis (e;, e; + we,) thus determined (e,, e}). Replace the basis (e;, €4) by a
new basis (e; + w’ej, ;) where w’ is the unique integer determined by

4 4
el * € 1 €; - e2
_——-< w’ < —

2 = 2
(-2 2 (-2

1
8 — =.
® + 2
The above procedure is then iterated until two successive minimizing integers of the
form w and w’ are zero. The resulting basis (&,, &,) is reduced since, from (7), & =
2¢é,-8, = —&? and, from (8), &% = 28&,-&, = —&7 and therefore

& = 218,-8| and & = 285,

which implies that &, and &, are in length less than or equal to the length of the diag-
onals of the parallelograms which have &,, &; as adjacent sides. The above algorithm
must eventually terminate since for each pair of steps of the algorithm for which
w and w’ is not both zero, the vectors (e,, €,) with integer coordinates are replaced by
a pair of vectors (e}, e3) with integer coordinates such that |e]| < |e,| and |ej| < |e,| ,
with strict inequality in one of the cases.

5. Reduction Algorithm inthe Case 3 < n < 6. Assume3 S n<6.Let E=
(e, €3 - -+, &,) be a set of basis vectors of a lattice G,. Stage 1 of the reduction algor-
ithm consists in successively replacing each pair of distinct vectors in E by a reduced
pair, using the reduction algorithm for n = 2. This replacement defines a unimodular
transformation from E to new set of vectors E’ and hence E’ is a basis of G,. This
operation is repeated until no further reduction by pairs is possible.

Stage 2 of the algorithm consists in examining for each k-tuple (e;,)is;is: the
vectors Y ¢, (&)Ce;, where the values of C, are described in Section 2. If it is found
for some combination of =+ signs and C,’s and for some e;, that ’

k
le;| > Z (£)Ciey,f ,
=1

the vector e, is replaced by the vector e}, = > i., (£)C.e;, (the transformation
from E = (&:)i5is. to E' = (e, €, -+ , €/, -+, &,) is unimodular). Stage 1 of the
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algorithm is repeated on E’. The algorithm must terminate after a finite number of
steps, since if a basis is altered by an operation in stages 1 or 2, the alteration consists
in replacing a vector with integer coordinates with a shorter vector having integer
coordinates.

Remark. In the initial consideration of the problem of finding reduced bases
for n > 2, the search technique suggested by Coveyou and MacPherson [3] was
considered with some modifications suggested in van der Waerden [12]. Without
preliminary reduction it was found in a typical example (of the type discussed in this
paper) about 10*° vectors would have had to be examined to find the shortest nonzero
vector. Techniques used in crystallography were also considered (see Azaroff and
Buerger [1] and Roof [10]). Tests showed that these techniques were unsatisfactory
for our purposes, due to lack of precision and the amount of search required.

6. Finding Bases for Multiplicative Congruential Pseudo-Random Points.
To apply the reduction algorithm to the determination of reduced bases for pseudo-
random points of the form (3) or (5), it is necessary to find a basis of these points.
The method of finding a basis is illustrated by an example.

Consider the example of the generator (1) with X\ = 5 (mod 8) and x, = 1 (mod 4).
To find a set of basis vectors for G, defined by (5), choose a set of n + 1 vectors in G,
as follows:

o= (1, A, A%, ««+ , A",
1= (da; + 1, Mda; + 1) + #12°, -+« [ N"7(da; + 1) + K720,
i= 1,2, cee o, ny

where a;, H:,i= 1,2, ,n,k =1,2,--+,n— 1, are arbitrary integers. A calculation
gives

1 -1
a, hi e h’l‘

det (I'.- - r()) — 22+(n—])ﬁ (24

1 -1
b hy

and |det (r; — r,)| has its minimum nonzero value when o, = b = h; = -+ =
K™' = 1, the other determinant entries being zero. Thus a set of basis vectors of G, is
given by (with these choices for «; and A?)

Ifn — Iy = 4(1a >\s )\21 e ,xn—l)’
r;—ro=(0,0,---,26,0,---,0), i=2,3,+,n,

where 2° appears in the ith place.

7. Examples. Tables 1 to 5 present a few examples. It is hoped that the captions
are self-explanatory, except for “figure of merit” defined for a reduced basis
{yoi=12,--+,n} by

min |y}
figure of merit = &2 —

max |y;|
1sisn
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The figure of merit provides some measure (neglecting angle) of the departure of the
reduced cell from “squareness.” x.xx — Oa means x.xx-107°, The angles refer to
angles between the edges. Angles between higher-dimensional flats have not been
calculated, but it might be useful to do so. Each row of the tables lists the components
of a vector.

It is seen from these tables that multipliers of simple structure, such as 5 or 2'" + 5
produce lattices of points which depart greatly from a uniform distribution throughout
the cube. Multipliers of more complex structure, such as 5'° or the “randomly”
selected multiplier 273673163157 produce better lattices. A typical time for the
computation of a table on Maniac II was 20 minutes. The CDC 6600 is perhaps
8 times faster than Maniac II.

It is hoped that more examples with a more complete discussion can be presented
in the future.

8. Connection Between Lattices of Pseudo-Random Points and the Theory
of Discrepancy. Zaremba [15], Schmidt [11], and others (see references in [11]
and [15]) have discussed the notion of the discrepancy D(S) of a finite number of
points S in the unit cube I, C E". The quantity D(S) can be used to estimate the error
in the evaluation of a multidimensional integral. As an example, if f(x, ) is of bounded
variation in the sense of Hardy and Krause over I, and S = (xo, - -+ , Xy_) is an
arbitrary sequence of points in I,, then

N-1
f; fx)dz — N7 Ig &) £ V(ODS) + V(fx, D)D(X) + V((, »)D(Y),

where ¥ and V? denote one- and two-dimensional variation and X and Y are projec-
tions of S on the x and y axis respectively. Roth (see [15]) has proved that, for E”,

D(S) g CnN"l(log N)(n—l)/2

for some constant C,.

It seems to be a reasonable conjecture that if the figure of merit (see Section 7)
of a lattice G, is very small, then D(G, M I,) is large. Conversely, if the figure of merit
is near 1, D(G, M 1) is small,

It should be remarked that the application of this lattice theory to much shorter
segments of the full period of the generator sequence depends on the extent to which
the lattice properties are reflected in the segments.

Acknowledgment. The authors thank Dr. W. W. Wood of this laboratory for
valuable help and suggestions in the preparation of this paper.

Postscript. After completion of the above paper, the following important paper
came to the authors’ attention:

R.R. Coveyou, “Random number generation is too important to be left to chance,”
Studies in Appl. Math., v. 3, 1970, pp. 70-111.

That paper has things in common with our paper. However, our paper was written
independently and differs from the former in important details. It was thought best
to not revise the present paper.
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